Main menu

Pages

Experiment and Calculation of Reinforced Concrete at Elevated Temperatures

 Download Experiment and Calculation of Reinforced Concrete at Elevated Temperatures Easily In PDF Format For Free.

Download Experiment and Calculation of Reinforced Concrete at Elevated Temperatures Easily In PDF Format For Free.

PREFACE:

Reinforced concrete structures are the most common component in structural engineering. Engineering  experience  and  research  achievements, improvements  in  manufacturing  technology, and  applications  of  new  and  efficient  materials have led to a great deal of progress in reinforced concrete  structures.  


The  performance  index  is increasing continuously, structural configurations are more varied, and the scope of applications is expanding  greatly.  Today,  reinforced  concrete structures  are  used  widely  not  only  in  various civil and public buildings, single- and multi-story industrial buildings, and high-rise and large-span buildings,  but  also  in  bridges,  communication installations,  and  hydraulic  and  underground engineering.  Reinforced  or  prestressed  concrete structures are also used in special structures, e.g., TV  towers,  electrical  transmission  poles,  silos, chimneys, even reactor and containment vessels in nuclear power plants, and very large hydraulic forging presses. 


Generally, concrete structures work at room temperature (<60 °C) and they can be designed or their safety can be checked using the current codes. [0-1] However, some structures, e.g., metallurgical and chemical plants, chimneys, nuclear reactors  and  their  containment  structures,  and hydraulic  forging  presses,  work  constantly  in high  temperature  environments  (100–500  °C). 


In  addition,  building  fire  accidents  occasionally occur due to natural or man-made causes. These accidents cause the structure in a building bearing a high temperature attack to reach maximum  temperatures  of  1000  °C  or  higher within a short time (e.g., 1 h). When the concrete  structure  reaches  elevated  temperatures, it  experiences  cracking,  increased  deformation,  and  reduced  strength,  because  of  serious deterioration of material behavior and internal force  redistribution  of  the  structure.


  Then  the structure  may  fail  and  even  collapse,  and  this will result in significant economic losses and loss of life. The research work related to this field is still limited  in  China  and  no  corresponding  design code  is  available  for  engineers.  


Therefore,  the development requirements of construction engineering  cannot  be  met,  and  research  on  the behavior of concrete materials and structures at elevated temperatures has become an important and urgent task. The  authors  and  several  postgraduates  have completed several research projects in this field since  1989.  


These  projects  are  financially  supported  by  the  863  High  Science  and  Technology  Plan  of  the  National  Science  Committee, National Natural Science Foundation, and Doctoral  Research  Foundation  of  the  Education Ministry  of  China.  


This  book  is  a  systematic collection and summary of the experimental and theoretical research results of these projects. The postgraduate students who took part in the projects are: Quiping Shi, Xudong Shi, Yütao Guo, and Jianping Yang (doctoral students) and Wei Li,  Li  Jiang,  Huadong  Li,  Jianlin  Nan,  Tongguang Lü, Jieying Zhang, and Jinfeng Sun (masters students). In addition, many undergraduate students took part in the experimental work during their graduation projects.

Comments