Main menu

Pages

Reinforced Concrete: Design, Performance and Applications

 Download Reinforced Concrete: Design, Performance and Applications  Easily In PDF Format For Free.

Download Reinforced Concrete: Design, Performance and Applications  Easily In PDF Format For Free




PREFACE:

Concrete is one of the most used materials  in the construction  industry. In structural  systems,  the  combination  of  concrete  and  steel  reinforcement  bars gives  rise  to  reinforced  concrete  (RC),  which  is  widely  applied  in  the  civil engineering  field due to its adequate mechanical strength, durability, and fire resistance.  


Steel-rebar  reinforced  structures  are  subjected  to  structural deterioration  when  subjected  to  extreme  loadings  such  as  earthquake,  fire, impact  loadings  and  cyclic  loading,  consequently  reducing  the  expected  life and performance of structures. To enhance the structural performance, the RC structures  are  usually  retrofitted  or  strengthened.  This  book  reviews  design, performance and applications of reinforced concrete.


 Chapter 1 – Fibre reinforced polymer (FRP) is used extensively nowadays in construction  industry  to reinforce and strengthen reinforced concrete  (RC) structures to enhance the structural performance of the structures under various loading conditions. Finite element analysis  is an efficient and accurate method for  modelling  the  structural  behavior  of  FRP  strengthened  RC  structures especially  under  extreme  loadings  such  as  cyclic  loading.  


For  accurate numerical  modelling  of  the  structural  behavior  of  FRP  strengthened  RC beams, appropriate material models  of each component and bond behavior are essential.  In this chapter, the developed materials  models for concrete,  FRP, steel  rebar  and  adhesive  and  the  bond  stress-slip  models  for  FRP/adhesive/ concrete  interfaces  are  reviewed.  In  addition  the  developed  finite  element models  for  analysis  of  FRP  strengthened  RC  beams  under  static  and  cyclic load are also reviewed. Chapter 2 – The nonlinear behavior of reinforced concrete (RC) structures can  be  represented  using  the  continuum  damage  models.  The  goal  of  this approach  is  the  description  of  the  processes  of  mechanical  damage  and  the subsequent  implementation  in  structural  analysis  programs. 


 In  continuum damage  models,  the  damage  evaluation  is  carried  out  across  the  entire structural  domain,  which  significantly  increases  the  computational  effort. Alternatively,  lumped  damage  mechanics  allows  for  an  accurate  mechanical modeling of non-linear behavior of concrete without representing damage over the total structural area. This theory combines concepts of fracture mechanics with the plastic hinge idea and it can be used accurately  in one-dimensional structural  elements.  In  this  chapter,  this  theory  is  applied  to  the  mechanical analysis of one RC beam and one RC frame. The results are compared with numerical  and  experimental  responses  available  in  the  literature.  Good agreement  is  observed  among  the  results  shown  in  the  references  and  those obtained by the lumped damage model. Chapter  3  –  This  study  aims  the  mecano-probabilistic  modelling  of reinforced  concrete  structures  subjected  to  reinforcements’  corrosion.


  The corrosion time initiation  due to the carbonation  or the chloride penetration is assessed by diffusion approaches. The tree of failure is utilized for determining the  probability  of  individual  and  global  failure  modes.  


The  structural mechanical resistance is evaluated according to the Brazilian design code NBR 6118/2014. The penalizations over the reinforcements’ cross section area and over its yield  stress, both caused by the corrosion process, are accounted. The loading is modelled by the extreme value process.


 Probability of failure curves for the corrosion time initiation; mechanical failure and reinforcements’ steel loss along time are presented. In addition to the assessment  of the probability of individual failure modes, the progressive collapse paths along 50 years are analysed. The results obtained show that relevant changes on the predominant mechanical  failure  mode  occur  along  time.  Moreover,  major  values  for  the reinforcements’  steel  loss  and  the  probability  of  mechanical  collapse  are observed  at  the  end  of  50  years,  even  accounting  for  the  design  code recommendations. Chapter 4 – Studies concerning with atmospheric corrosion of metals have been carried out during many years.


 Havana City  could be considered as one of  the  zones  of  higher  atmospheric  corrosion  in  the  world.  In  the  present chapter,  the  methodology  often  used  in  studies  of  atmospheric  corrosion  in metals  is  applied  to  study  the  atmospheric  corrosion  of  steel-reinforced concrete. It is possible to reduce the premature deterioration in the structures in  conditions  of  a  coastal  city  located  in  a  tropical  island  through  the evaluation  of  the  corrosion  behavior  of  different  types  of  concrete  and covering thicknesses.


The use of reinforced concrete  with water  cement ratios 0.5 and 0.6 and covering thicknesses 20 and 40 mm does not assure an adequate durability and useful life for structures submitted to corrosivity categories of the atmospheres very  high  (C5)  and  extreme  (CX)  in  a  coastal-industrial  atmosphere.  It  is required  the  use  of  w/c  ratio  0.4  and  cover  thickness  40  mm  to  assure  an adequate durability. 


Chapter 5 –  The reinforced concrete  structures must beings able to absorb the  forces  applied  to  them  throughout  their  lives  and  support  the  alterations over time and the environment  to which they are exposed. In this context, an experimental  study  was  conducted  on  a  public-use  building  which  has structural disorders using non-destructive testing (NDT).


 The rebound hammer test, the ultrasonic  device and the chemical  test  are used in the field of nondestructive  tests  to  determine  respectively  the  compression  strength,  the ultrasonic  pulse  velocity  (UPV)  and  the  rebar  corrosion  in  the  concrete. Indeed,  the  test  results  were  analyzed  to  identify  the  different  disorders  in order  to  offer  adequate  compensation  method  and  protection  against  future attacks. Test results have shown that the concrete exhibits good compressive strength. The steel  was completely corroded as a result of a chemical attack. The  method  of  jacketing  has  been  proposed  for  strengthening  of  building columns.


Comments